零点看书

字:
关灯 护眼
零点看书 > 走进不科学 > 第八百零七章 我徐某人从未开挂.....思维卡,激活!

第八百零七章 我徐某人从未开挂.....思维卡,激活!

第八百零七章 我徐某人从未开挂.....思维卡,激活! (第2/2页)

譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。
  
  因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。
  
  所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。
  
  他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。
  
  当然了。
  
  即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。
  
  随后徐云深吸一口气,将注意力放到了面前的算纸上。
  
  只见他拿起笔,很快在纸上写下了那道方程:
  
  4d\/b2=4(√(d1d2))2\/[2d0]2=√(d1d2)\/[d0]=(1-η2)≤1.......
  
  {qjik}K(Z\/t)=∑(jik=S)n(jik=q)(xi)(wj)(rk);(j=0,1,2,3…;i=0,1,2,3…;k=0,1,2,3…)
  
  {qjik}K(Z\/t)=[xaK(Z±S±N±p),xbK(Z±S±N±p),…,xpK(Z±S±N±p),…}∈{dh}K(Z±S±N±p).......
  
  (1-ηf2)(Z±3)=[{K(Z±3)√d}\/{R}]K(Z±m±N±3)=∑(ji=3)(ηa+ηb+ηc)K(Z±N±3);
  
  (1-η2)(Z±(N=5)±3):(K(Z±3)√120)K\/[(1\/3)K(8+5+3)]K(Z±1)≤1(Z±(N=5)±3);
  
  w(x)=(1-η[xy]2)K(Z±S±N±p)\/t{0,2}K(Z±S±N±p)\/t{w(x0)}K(Z±S±N±p)\/t...........
  
  最后的一个公式...或者说一个数值为:
  
  Le(sx)(Z\/t)=[∑(1\/c(±S±p)-1{nxi-1}]-1=n(1-x(p)p-s)-1。
  
  这是一个标准的正则化组合系数和解析延拓方程组,涉及到了无限多层次的对称与不对称曲线曲面的圆对数与拓扑。
  
  其中第一阶段是一到三行,通过∑(jik=S)n(jik=q)(xi)(wj)可以确定曲面与经线成了某个定角,从而假设定模型λ=(A,b,π),以及观测序列o=(o1,o2,...,ot)。
  
  按照上面的逻辑推导,就可以得出孤点粒子的概率轨道。
  
  而徐云现在要做的则是.....
  
  推导第三到第五行,也就是第二阶段。
  
  徐云解答第二阶段的思路是讨论存在性问题,再将现在的收敛半径变为无穷大,从而在整个实数线上收敛。
  
  如今在陈景润思维卡的加持下,徐云对于自己思路的把握又高了几分——这个方向没错。
  
  随后他顿了顿,继续推导了起来。
  
  “已知允许幂级数中的变量x取复数值时,幂级数收敛的值在复平面上形成一个二维区域,就幂级数来说,这个区域总是具有圆盘的形状......”
  
  “然后利用高斯函数的Fourier变换F{e?a2t2}(k)=πae?π2k2\/a2,以及poisson求和公式可以得到......”
  
  “考虑积分g(s)=12πi∮γzs?1e?z?1dz,其中围道应该是limk→∞gk(s)=g(s).....”(这些推导是我自己算的,这部分我不太确定正不正确,用了留数定理和梅林积分变换,要是有问题欢迎指正或者读者群私聊我,这种涉及到比较多数学问题的推导不是我的专精方向)
  
  众所周知。
  
  解析延拓就是指两个解析函数f1(z)与f2(z)分别在区域d1与d2解析,区域d1与d2有一交集d,且在区域d上恒有f1(z)=f2(z)。
  
  这时便可以认为解析函数f1(z)与f2(z)在对方的区域上互为解析延拓,同时解析函数f1(z)与f2(z)实际上是同一函数f(z)在不同区域的不同表达式。
  
  举个最简单的例子。
  
  由幂级数定义的函数f1(z)=∑n=0∞zn在单位圆|z|
  
  所以我们说函数f(z)=11?z是幂级数f1(z)在复平面上的解析延拓。
  
  非常简单,也非常好理解。
  
  徐云在第一阶段得到的广义积分在0c||Re(s)
  
  “然后再引入Γ函数,它是阶乘函数在实数与复数域上的扩展,当它的宗量为正整数时,有Γ(n)=(n?1)!......”
  
  “这部分似乎可以用渐进概念来做个近似......”
  
  “如果近似到场论的话,相当于量子化自由Klein-Gordon场时,(+m2)?(x)=0,那么场算符就是?(x)=∫d3p(2π)312Ep(ape?ipx+ap?eipx).......”
  
  “然后再把场算符代算回来......”
  
  半个小时后。
  
  徐云忽然停下了笔,眉头微微皱了起来:
  
  “激发电场.....果然是和晶体有关。”
  
  此时此刻。
  
  徐云面前的算纸之上,赫然正写着几个Nabla算符。
  
  要知道。
  
  他之前虽然对推导过程进行过渐进处理,但本身是没有引入激发电场概念的,更别说徐云之前还完成了代算。
  
  也就是说这几个Nabla算符并不是渐进项解开后出现的错误算子,而是与方程自身有关的参数。
  
  更重要的是.....
  
  随着这一步方程的解开,公式中出现了一个新的并立项。
  
  它叫做.....频率,计量单位是meV。
  
  频率、激发电场、加上徐云最早独力发现的类似层状结构的表达式......
  
  第二阶段成果的物理意义,似乎已经呼之欲出了。
  
  想到这里。
  
  徐云重新拿起边上的茶杯猛灌了一大口浓茶,重新提笔计算了起来。
  
  “先做个实空间中的局域连续函数,然后把低能有效拉格朗日量根据对称性的要求表达成Φ的泛函......”
  
  “左右乘e?2πjmt\/t0并在(?t02,t02)上积分,左侧显然为1,而右侧由正交性不难得到结果为t0cm......”
  
  “然后再运用个搞积技巧.....”
  
  “当Re(s)>1时,∫x?sdx在x→0+处有可能有奇性,比如∫x?2dx=∫d(?x?1)=?x?1+c......”
  
  “叽里咕噜.....1+2+3=6......”
  
  又过了二十多分钟。
  
  在陈景润思维卡即将到期之际,徐云整个人的肩膀顿时一松,吧嗒一下靠到了椅背上。
  
  此时此刻。
  
  他面前已然堆满了书写的密密麻麻的算纸,上头尽是各种对于普通人如同魔文的推导过程。
  
  “终于搞定了,果然是它.......”
  
  .......
  
  注:
  
  暗示的很清楚了,有没有同学猜到是啥?
  
  玩个小游戏,如果有人猜中答案,下本书可以定制一个主角团的角色,当然名字不能太离谱,多人猜中按照最早楼层的那个为准。
  
  
『加入书签,方便阅读』
热门推荐
御鬼者传奇 逆剑狂神 万道剑尊 美女总裁的最强高手 医妃惊世 文明之万界领主 不灭武尊 网游之剑刃舞者 生生不灭 重生南非当警察